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Hyperspectral Image Restoration Using Low-Rank
Tensor Recovery

Haiyan Fan, Yunjin Chen, Yulan Guo, Hongyan Zhang, Senior Member, IEEE,
and Gangyao Kuang, Senior Member, IEEE

Abstract—This paper studies the hyperspectral image (HSI) de-
noising problem under the assumption that the signal is low in
rank. In this paper, a mixture of Gaussian noise and sparse noise
is considered. The sparse noise includes stripes, impulse noise, and
dead pixels. The denoising task is formulated as a low-rank tensor
recovery (LRTR) problem from Gaussian noise and sparse noise.
Traditional low-rank tensor decomposition methods are generally
NP-hard to compute. Besides, these tensor decomposition based
methods are sensitive to sparse noise. In contrast, the proposed
LRTR method can preserve the global structure of HSIs and simul-
taneously remove Gaussian noise and sparse noise.The proposed
method is based on a new tensor singular value decomposition and
tensor nuclear norm. The NP-hard tensor recovery task is well
accomplished by polynomial time algorithms. The convergence of
the algorithm and the parameter settings are also described in de-
tail. Preliminary numerical experiments have demonstrated that
the proposed method is effective for low-rank tensor recovery from
Gaussian noise and sparse noise. Experimental results also show
that the proposed LRTR method outperforms other denoising al-
gorithms on real corrupted hyperspectral data.

Index Terms—Alternating direction method of multiplier
(ADMM), gaussian noise, low-rank tensor, recovery, sparse noise,
tensor singular value decomposition (t-SVD).

I. INTRODUCTION

AHYPERSPECTRAL image (HSI) is a three-dimensional
data cube, in which the first and second dimensions corre-

spond to the spatial domain and the third dimension corresponds
to the spectral dimension. Due to the rich spectral information,
HSIs have drawn a lot of attention in various application fields
[1]–[2]. Nevertheless, HSIs collected in practice often suffer
from various annoying degradations, e.g., noise contamination,
stripe corruption, and missing data, due to the sensor, photon
effects, and calibration error. For real-world HSIs, there usually
exists a combination of several types of noise, e.g., Gaussian
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noise, impulse noise, dead pixels or lines, and stripes [3]–[4].
The non-Gaussian noise (including impulse noise, dead pixels
or lines, stripes, etc.) has a sparsity property. So the mixture
of impulse noise, dead pixels or lines, stripes is considered as
sparse noise. The degradation of HSIs caused by various types
of noise hinders the effectiveness of subsequent HSI processing
tasks, e.g., spectral signature unmixing [5]–[6], segmentation
[7], matching [8], and classification [9]–[10]. Therefore, HSI
denoising is a critical preprocessing step for HSI applications
[11].

In last few decades, a large number of denoising methods
have been proposed. 3-D transform-domain collaborative fil-
tering [12] and nonlocal algorithm [13] consider each band of
HSI as a 2-D image. These methods introduce a loss of in-
terspectral information as the correlation between neighboring
spectral bands is not considered. To use spectral information,
HSI noise reduction algorithms combining spatial and spectral
information are proposed, including a hybrid spatial–spectral
derivative-domain wavelet shrinkage noise reduction approach
[14], a bivariate wavelet shrinkage based method [15], and a
spectral–spatial adaptive total variation (TV) model [16]. An-
other popular approach is based on principle component analy-
sis (PCA), which assumes that high-dimensional hyperspectral
data underlie a low-dimensional intrinsic space. HSI is denoised
using the inverse transform of the first few principal compo-
nents (PCs). However, some useful information may be lost in
the denoised image. In [3], a low-rank matrix recovery method
was adopted to simultaneously remove Gaussian noise, impulse
noise, and stripes. To handle the problem that noise intensity
is different in different bands, a noise-adjusted iterative low-
rank matrix approximation approach was proposed in [17]. He
et al. [18] unified the TV regularization and low-rank matrix
factorization for HSI denoising. Wang et al. [19] proposed a
group low-rank representation (LLR)denoising method for the
reconstruction of corrupted HSIs. Fan et al. [20] proposed an
superpixel segmentation (SS) LRR denoising method in which
the SS and LRR were combined for HSI denoising. As a power-
ful statistical image modeling technique, sparse representation
has been successfully used in image denoising [21]. Zhao et al.
[22] proposed to combine sparse representation and low-rank
constraint for Gaussian noise removal. Yang et al. [23] ex-
tended the work and unified denoising and unmixing in a sparse
representation framework. A nonnegative sparse matrix factor-
ization method was proposed for HSI denoising in [24]. Zhu
et al. [25] proposed a low-rank spectral nonlocal approach to

1939-1404 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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simultaneously remove mixed noise. Sparse and low-rank penal-
ties were combined in [26] for the removal of sparse noise. Be-
sides, Ma et al. [27] proposed a low-rank matrix approximation
to image matching and has achieved very promising results.
Although these methods have considered the spectral correla-
tionships, they mainly convert high-dimensional HSI data into
2-D data by vectorizing the data in each band. This strategy will
introduce loss of useful multiorder structure information.

In multilinear algebra, HSI data cube can be considered as
a three-order tensor. Therefore, spatial-spectral information can
be simultaneously handled by a tensor decomposition based
algorithm. Two kinds of tensor decomposition algorithms are
usually used in the literature, namely Tucker decomposition
and parallel factor analysis (PARAFAC) decomposition. Tucker
decomposition based denoising methods include the lower rank
tensor approximation (LRTA) [28], the genetic kernel Tucker
decomposition [29], and the multidimensional Wiener filtering
method [30]. The PARAFAC decomposition based denoising
methods include the PARAFAC model [31] and the rank-1 ten-
sor decomposition method [32]. Under the limitation of prior
knowledge, the aforementioned tensor algebra methods are im-
plicitly developed for additive white Gaussian noise. Several
3-D denoising methods, such as VBM3D [33] and BM4D [34],
can also be used for HSI noise removal. 3-D sparse coding was
exploited to denoise HSI [35], which fully explored the spectral
information by extracting different patches.

In recent years, robust tensor recovery and completion plays
an important role in multilinear data analysis. Tensor decom-
positions are robust to outliers and gross corruptions [36]. Ten-
sor decomposition resembles PC analysis for matrices, and the
robust PC analysis (RPCA) [37] is robust to outliers and cor-
rupted observations. More recently, Zhang et al. [38] proposed
the tensor tubal rank using a new tensor decomposition scheme
[39], which is referred as tensor singular value decomposition
(t-SVD). t-SVD is based on a new definition of tensor-tensor
product, which has many similar properties as its matrix coun-
terpart. Based on the computable t-SVD, the tensor nuclear norm
[40] was used to replace the tubal rank for low-rank tensor re-
covery (LRTR) from incomplete/corrupted tensors. Lu et al.
[41] studied the tensor RPCA to recover the low tubal rank
component and sparse component from noisy observations us-
ing convex optimization. Unlike the traditional HSI denoising
methods, our proposed method is based on the prior knowledge
in practice. First, the clean HSI data have the underlying low-
rank tensor property, even though the actual HSI data may not
be due to outliers and non-Gaussian noise [28]. The nuclear
norm is used as a convex surrogate function for the low-rank
tensor. In this paper, we propose an HSI denoising technique
using LRTR. Our model is based on the aforementioned t-SVD
and its induced tensor tubal rank and tensor nuclear norm. It
can simultaneously remove Gaussian noise, impulse noise, dead
pixels, dead lines, and stripes. Our approach can be solved us-
ing polynomial-time algorithms, e.g., the alternating direction
method of multiplier (ADMM). In this paper, the ADMM algo-
rithm is used to achieve LRTR by heuristically solving a convex
relaxation problem. Specifically, the tensor nuclear norm, l1-
norm, and l2-norm are used to induce low-rank component,
sparse component and Gaussian noise term.

A. Paper Contribution

The contributions of this paper are threefold.
1) The robust tensor recovery from Gaussian noise and sparse

noise is well accomplished by integrating the tensor nu-
clear norm, the l1-norm and the l2-norm in a unified con-
vex relaxation framework.

2) ADMM is used to solve the optimization problem. The
optimal range for the penalty parameter and the conver-
gence analysis of the ADMM-based algorithm are given.

3) Numerical experiments on synthetic datasets confirm that
the proposed method can achieve the recovery of low-rank
tensors corrupted by Gaussian noise and sparse noise.
When applied to corrupted HSI restoration, experiments
show that the proposed method outperforms other denois-
ing algorithms.

B. Paper Organization

The rest of this paper is structured as follows. Section II
introduces some notations and preliminaries for tensors. In
Section III, we describe the proposed model in detail. Section IV
presents the ADMM method to solve the optimization problem.
Convergence analysis and stopping criterion of the proposed
ADMM-based algorithm are also given. In Section V, exper-
iments are conducted to demonstrate the effectiveness of the
proposed method. The final section gives concluding remarks.

II. NOTATION AND PRELIMINARIES

The order of a tensor is equal to the number of its dimen-
sions (also known as ways or modes). Throughout this paper,
tensors are denoted as capitalized calligraphic letters, e.g., A.
Matrices are denoted as capitalized boldface letters, e.g., A.
Vectors are denoted as boldface letters, e.g., a. Scalars are de-
noted as lowercase letters, e.g., a. The field of real number is
denoted as R. For an m-order tensor A ∈ Rn1×n2×···×nm , we
denote its (i1 , i2 , . . . , im )-element as Ai1 i2 ···im

or ai1 ,i2 ,...,im
.

For a three-order tensor A, A(i, :, :), A(:, i, :), and A(:, :, i) are
used to represent the ith horizontal, lateral, and frontal slice.
The frontal slice A(:, :, i) can also be denoted as A(i) .

Several norms for vector, matrix, and tensor are used.
The l1-norm is calculated as ‖A‖1 =

∑
i1 ,i2 ,...,im

|ai1 ,i2 ,...,im
|

and the Frobenius norm is calculated as ‖A‖F =√∑
i1 ,i2 ,...,im

|ai1 ,i2 ,...,im
|2 . The matrix nuclear norm is

‖A‖∗ =
∑

i σi(A).
For a three-order tensor A, let Â be the discrete Fourier

transform (DFT) along the third dimension of A, i.e.,
Â = fft(A, [], 3). Similarly, A can be calculated from Â by
ifft(Â, [], 3). Let Ā ∈ Rn1 n3×n2 n3 be the block diagonal ma-
trix with each block on diagonal as the frontal slice Â(i) of Â
[42], i.e.,

⎛

⎜
⎜
⎜
⎝

Â(1)

Â(2)

. . .

Â(n3 )

⎞

⎟
⎟
⎟
⎠
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The t-product [39], [41] is defined on a block circular ma-
trix. For a three-order tensorA ∈ Rn1×n2×n3 , its block circular
matrix bcirc(A) has a size of n1n3 × n2n3 and is defined as

bcirc(A) =

⎛

⎜
⎜
⎜
⎝

A(1) A(2) · · · A(n3 )

A(2) A(1) · · · A(n3 )

...
...

. . .
...

A(n3 ) A(n3−1) · · · A(1)

⎞

⎟
⎟
⎟
⎠

. (1)

Two other operators, unfold and fold are, respectively,
defined as

unfold(A) =

⎛

⎜
⎜
⎜
⎝

A(1)

A(2)

...
A(n3 )

⎞

⎟
⎟
⎟
⎠

(2)

fold(unfold(A)) = A. (3)

Given two third-order tensors A ∈ Rn1×n2×n3 and B ∈
Rn2×n4×n3 , the t-product of A and B is defined as

A ∗ B = fold(bcirc(A) · unfold(B)). (4)

Theorem 1: LetA ∈ Rn1×n2×n3 , the t-SVD factorization of
tensor A is

A = Q ∗ S ∗ V∗ (5)

where Q ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal.
S ∈ Rn1×n2×n3 is an f-diagonal tensor and V∗ is the conjugate
tensor of V obtained by conjugately transposing each frontal
slice and then reversing the order of transposed frontal slices 2
through n3 [41].

t-SVD cannot be directly computed in the original domain as
matrix SVD does. However, t-SVD can be efficiently computed
based on the matrix SVD in the Fourier domain. This is based
on a key property that the block circulant matrix can be mapped
to a block diagonal matrix in the Fourier domain, i.e.,

(Fn3 ⊗ In1 ) · bcirc(A) · (F−1
n3
⊗ In2 ) = Ā (6)

where Fn3 denotes the n3 × n3 DFT matrix and ⊗ denotes the
Kronecker product. Using the relationship between the circular
convolution and the DFT, we can perform t-SVD via matrix
SVD on each frontal slice in the Fourier domain, i.e.,

[Q̂(:, :, i)), Ŝ(:, :, i)), V̂∗(:, :, i))] = SVD(Â(:, :, i) (7)

for k = 1, . . . , n3 . Then, we can obtain the t-SVD of tensor
A by

Q = ifft(Q̂, [], 3) (8)

S = ifft(Ŝ, [], 3) (9)

V = ifft(V̂, [], 3). (10)

The resulting t-SVD provides a means for optimally approxi-
mating the tensor as a sum of outer products of matrices.

Definition 1: (Tensor multi-rank and tubal rank)[41] The
tensor multirank of A ∈ Rn1×n2×n3 is a vector r ∈ Rn3 with
the ith entry being defined as the rank of Â(i) . The tensor tubal

rank rankt(A) is defined as the number of nonzero singular
tubes of S obtained from the t-SVD of tensor A in (5), i.e.,

rankt(A) = � {i : S(i, i, :) �= 0} = maxiri . (11)

Definition 2: (Tensor nuclear norm)[42] The nuclear norm
of tensor A ∈ Rn1×n2×n3 , denoted as ‖A‖∗, is defined as the
average of the nuclear norm of all the frontal slices of Â, i.e.,

‖A‖∗ =
1
n3

n3∑

i=1

Â(i) =
1
n3

∑

i,j

Ŝ(i, i, j). (12)

The above-mentioned tensor nuclear norm is defined in the
Fourier domain. It is closely related to the nuclear norm of
the block circulant matrix in the original domain. That is

‖A‖∗ = 1
n3

∑n3
i=1 Â(i) = 1

n3
‖Ā‖∗

= 1
n3
‖(Fn3 ⊗ In1 ) · bcirc(A) · (F−1

n3
⊗ In2 )‖∗

= 1
n3
‖bcirc(A)‖∗.

(13)

The above-mentioned relationship gives an equivalent defini-
tion of the tensor nuclear norm in the original domain. So the
tensor nuclear norm is the nuclear norm [with a factor of a new
matricization (block circulant matrix)] of a tensor. Compared to
previous matricizations along a particular dimension (for HSIs
denoising, HSI data are often matricized along the spectral di-
mension), the block circulant matricization may preserve more
spacial relationship among entries.

Definition 3: (Tensor inner product) The inner product of A
and B ∈ Rn1×n2×···×nm is denoted as

〈A,B〉 =
∑

i1 ,i2 ,...,im

Ai1 i2 ···im
· Bi1 i2 ···im

. (14)

III. PROPOSED METHOD

A. Problem Formulation

HSI can be represented as a three-order tensor, where the
spatial information lies in the first two dimensions and the spec-
tral information lies in the third dimension. The hyperspectral
signal for each pixel can be modeled as the sum of two compo-
nents: the signal and the noise term. The noises can be divided
into two classes according to the density of their distributions:
sparse noise and dense noise, in which the sparse noise mainly
contains impulse noise, dead lines, dead pixels, and stripes. The
dense noise is assumed to be Gaussian distributed. In this paper,
the observation Y ∈ Rn1×n2×n3 (n1 × n2 is the dimensionality
in spatial domain and n3 is the number of spectral bands) is
expressed as the sum of three parts, that is

Y = F +N + S (15)

where Y is the observed noisy HSI,F is the clean hyperspectral
signal, N is the Gaussian noise, and S is the sparse noise.

B. Recovery of Low-Rank Tensor From Corrupted HSI Data

In this paper, we study the model defined in (15) to recover the
low-rank componentF from the observationsY = F +N + S.
Without considering the Gaussian noise N , Lu et al. [41] used
the Tensor Robust Principal Component Analysis (TRPCA) to
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recover a low-rank tensor via convex optimization, i.e.,

min
F ,S
‖F‖∗ + λ2‖S‖1

s.t. Ỹ = F + S.
(16)

In (16), λ2 = 1/
√

max(n1 , n2)n3 guarantees accurate recov-
ery when the low-rank tensor F ∈ Rn1×n2×n3 obeys the inco-
herence conditions, provided that the tubal rank of F is not
too large, and that S is reasonably sparse [43]. Moreover, (16)
can be solved by polynomial-time algorithms, e.g., the standard
ADMM [41], [43].

Then, we follow this convex optimization scheme to recover
the low-tubal-rank tensor F from the observations Y degraded
by both outlying observations S and noiseN . In this paper, the
low-rank approximation denoising is formulated as

min
F ,N ,S

‖F‖∗ + λ1‖NSI ‖2F + λ2‖S‖1
s.t. Y = F +N + S.

(17)

As stated in [28], the clean HSI data F has the low-rank tensor
property. Apart from t-SVD, there are mainly two types of LRTR
methods in the literature, i.e., the methods that are based on
CANDECOMP/PARAFAC(CP) format, and the methods based
on Tucker decomposition. In fact, if a tensor A ∈ Rn1×n2×n3

is a low-rank tensor (in either CP or Tucker sense), it is also a
low tubal rank tensor. Specifically, if a third-order tensor A is
of CP rank r, then its tubal rank is up to r [43]. In other words,
the low-rank tensor F can also be recovered by low tubal rank
constraint, rather than CP or Tucker decomposition. A tensor
of size Rn1×n2×n3 with rank r under t-SVD (referred to as the
tubal rank) can be recovered by solving a convex optimization
problem [43]. On one hand, tensor tubal rank has similar optimal
properties as matrix rank. On the other hand, using tensor tubal
rank allows processing HSI data as a third-order tensor, which
can preserve the global structure of HSI data, instead of adapting
data to classical matrix-based techniques.

As observed in [41] and [43], low-tubal-rank tensorF should
not be sparse. If recovery is possible, the following incoherence
conditions should be satisfied.

Definition 9: (Tensor Incoherence Conditions) For F ∈
Rn1×n2×n3 , suppose its tubal rank rankt(F) = r. Its t-SVD
is F = Q ∗ S ∗ V∗, where Q ∈ Rn1×r×n3 and V ∈ Rn2×r×n3

are orthogonal. S ∈ Rr×r×n3 is an f-diagonal tensor. Then, F
should satisfy the following incoherence conditions:

max
i=1,...,n1

‖Q∗ ∗ e̊i‖F ≤
√

μ0 r
n1 n3

(18)

max
j=1,...,n2

‖V∗ ∗ e̊j‖F ≤
√

μ0 r
n2 n3

(19)

where e̊i is the row basis of size n1 × 1× n3 with its (i, 1, 1)th
entry e̊i11 = 1 and other entries being zero. e̊j is the column
basis of size 1× n2 × n3 with its (1, j, 1)th entry e̊1j1 = 1 and
other entries being zero. Unlike matrix PCA, for Tensor PCA,
the joint incoherence condition is also necessary

‖Q ∗ V∗‖∞ ≤
√

μ0r

n1n2n2
3
. (20)

These incoherence conditions assert that for small values of μ0 ,
the singular vectors of F are reasonably spread out, in other

words, they are not sparse. Another identifiability issue arises
if the rank of sparse tensor S is low. This will occur, if the
nonzero entries of S occur in a column or in a few columns. To
avoid trivial situations, we assume that the sparsity pattern of
the sparse component S is selected uniformly at random [37].

Apart from the above-mentioned incoherence conditions, the
rank of the low-rank component F should not be too large,
and the sparse component S should be reasonably sparse, if
we want to perfectly recover F and S. We denote that n(1) =
max{n1 , n2} and n(2) = min{n1 , n2}.

Theorem 2: Assume that the low-rank tensor F obeys the
incoherence conditions (18)–(20). We first fix any n1 × n2 ×
n3 tensor R of signs. Suppose that the support set Ω of S
is uniformly distributed among all sets of cardinality m, and
sign(Sijk ) = Rijk for all (i, j, k) ∈ Ω. For perfect recover, the
rank ofF and the number of nonzero entries of S should satisfy
that

rankt(F) ≤ ρrn(2)

μ0(log(n(1)n3))2 and m ≤ ρsn1n2n
2
3

where ρr and ρs are positive constants. In fact, the above-
mentioned conditions indicate that this tensor recovery algo-
rithm works for large values of the rank, that is, on the order of

n ( 2 )

(log (n ( 1 ) n3 ))2 when μ0 is not too large. For sparse component
S, we only make assumption on the locations of nonzero entries
of S, but no assumption is given on the magnitudes or signs of
the nonzero entries [37], [41].

Theorem 3: λ2 is free from being a tuning parameter. Under
the incoherence conditions defined in (18)–(20) and Theorem 2,
the parameter λ2 used in (16) and (17) can be determined as a
constant λ2 = 1/

√
n(1)n3 , which is independent of the values

of F and S [37] [41].
It is now clear that F and S should be satisfied for tensor

recovery via TRPCA; another question arises: what conditions
N has to meet in order to perfectly recoverF from (17). It is ex-
pected thatN should not either be sparse or low in rank. IfN is
sparse, it is unable to identifyN from the sparse component S.
In other words, N should be dense enough. As described in
Section III-A, the elementwise model for noise component
ni1 ,i2 ,i3 is an ergodic Gaussian noise. It is well known that
a Gaussian noise model (large degree of freedom) corresponds
to a dense noise type [44], [45]. On the other hand,N should not
be low in rank. Otherwise, F cannot be recovered from random
noise. Due to the stochastic nature of Gaussian noise, it is as-
sumed that there is no correlation (or weak correlation) between
noise components. Thus, the rank of N is normally full and
much larger than the rank ofF , that is, rankt(N )� rankt(F).
Therefore, the low-rank component F can be recovered from
(17) by properly choosing the tuning parameter λ1 and λ2 .

IV. ADMM FOR LRTR

The constrained problem defined in (17) can be addressed by
a quadratic penalty approach, i.e., by solving

min
F ,N ,S

‖F‖∗ + λ1‖N‖2F + λ2‖S‖1

+
β

2
‖Y − (F +N + S)‖2F . (21)
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The solution of (21) can be approached to that of (17) by alter-
nating this minimization with respect to variables F ,N , and S.
However, the intermediate minimization becomes increasingly
ill-posed when β becomes large [46]–[47]. The augmented La-
grangian method (ALM) provides another term to mimic La-
grange multiplier and to overcome the ill-posed problem caused
by large value of β. The augmented Lagrangian function for
problem defined in (17) is

L (F ,N ,S,Λ1; λ1 , λ2 , β)

= ‖F‖∗ + λ1‖N‖2F + λ2‖S‖1
+ < Λ1 ,Y − (F +N + S) >

+
β

2
‖Y − (F +N + S)‖2F (22)

where Λ1 is the Lagrangian multipliers. ALM is used to mini-
mize L(·) with respect to variables F , N , and S while keeping
Λ1 fixed. It then updates Λ1 according to the following rule:

Λk+1
1 ← Λk

1 + β(Y − (Fk+1 +N k+1 + Sk+1)). (23)

However, minimizing L(·) in (22) with respect to all variables
F , N , and S can be a nontrivial problem. Instead, we use the
ADMM method, which is a variant of the ALM. ADMM uses
partial updates by keeping other variables fixed each time.

Using the ADMM framework for (22), we can update the
variables F , N , and S in the (k + 1)th iteration, by alternately
minimizing the following function while keeping the value of
Λ1 fixed at Λk

1

L̃ (F ,N ,S,A,Λk
1 ; λ1 , β,

)

= ‖F‖∗ + λ1‖N‖2F + λ2‖S‖1

+
β

2
‖Y − (F +N + S) +

Λk
1

β
‖2F . (24)

In the (k + 1)th iteration, Fk+1 , N k+1 , Sk+1 , and Λk+1
1 are

updated as follows:
For the updating of Fk+1 , we have

Fk+1 := argmin
F
L̄ (F ,N k ,Sk ,Λk

1
)

= argmin
F

(

‖F‖∗ +
β

2
‖Y

− (F +N k + Sk ) +
Λk

1

β
‖2F

)

. (25)

The updating of Fk+1 has a closed-form solution [38]. For the
sake of simplicity, we denote the iteration of Fk+1 in (25) as

Fk+1 := argmin
F

(

‖F‖∗ +
β

2
‖F − X k‖2F

)

(26)

where X k = Y − (N k + Sk ). Solving this optimization prob-
lem is equivalent to solving the following tensor recovery prob-
lem in frequency domain

F̂k+1 := argmin
F̂

(

‖F̄‖∗ +
β

2
‖F̂ − X̂ k‖2F

)

(27)

where F̂ is the DFT along the third dimension of F represented
by F̂ = fft(F , [], 3). Similarly, F can be calculated from F̂
via ifft(F̂ , [], 3). X̂ k is the DFT along the third dimension of
X k . F̄ ∈ Rn1 n3×n2 n3 represents the block diagonal matrix with
each block on diagonal as the frontal slice F̂(i) of F̂ . For more
details about these notations, one can refer to Section II.

For problem defined in (27), we can break it up to n3 in-
dependent minimization problems. Let F̂k+1,(i) denote the ith
frontal slice of F̂k+1 . Similarly, we can define F̂(i) and F̂k,(i) .

F̂k+1,(i) := argmin
F̂ ( i )

(

‖F̂(i)‖∗ +
β

2
‖F̂(i) − F̂k,(i)‖2F

)

.

(28)
In order to solve (28), we give the following lemma.

Lemma 1: Consider the SVD of a matrix A ∈ Rn1×n2 of
rank r.

A = Q ∗ S ∗V, S = diag({σi}1 ≤ i≤ r ) (29)

where Q ∈ Rn1×r and V ∈ Rn2×r are orthogonal, and the sin-
gular values σi are real and positive. Then, for all τ > 0, we
define the soft-thresholding operator D
Dτ (A) := Q ∗ Dτ (S) ∗V,Dτ (S)=diag({(σi−τ)+}1 ≤ i≤ r )

(30)
where x+ is an operator x+ = max(0, x). Then, for each τ > 0
and B ∈ Rn1×n2 , the singular value shrinkage operator defined
in (30) obeys

Dτ (A) = argmin
B

{
1
2
‖B−A‖2F + τ‖B‖∗

}

. (31)

Using (29)–(31) in Lemma 1, we have

F̂k+1,(i) := D 1
β
(X̂k,(i)) (32)

for i = 1, . . . , n3 and X k = Y − (N k + Sk ). The (k + 1)th
updating ofFk+1 can be obtained via inverse Fourier transform

Fk+1 := ifft(F̂k+1 , [], 3). (33)

For the updating of Sk+1 , we have

Sk+1 := argmin
S
L̄ (Fk+1 ,N k ,S,Λk

1
)

= argmin
S

(

λ2‖S‖1 +
β

2
‖Y

− (Fk+1 +N k + S) +
Λk

1

β
‖2F

)

. (34)

Equation (34) can be solved by a soft-shrinkage operator

Sk+1 := shrink
(

Y − (Fk+1 +N k ) +
Λk

1

β
,
λ2

β

)

(35)

where shrink(·, ·) is an elementwise soft-shrinkage operator.

For each element a of tensorY − (Fk+1 +N k ) + Λk
1

β , we have

shrink(a, λ2
β )

⎧
⎪⎨

⎪⎩

a− λ2
β , a > λ2

β

0, |a| ≤ λ2
β

a + λ2
β , a < − λ2

β .

(36)
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Algorithm 1: The Optimization Framework for LRTR
Input: Observation Y , parameters λ1 , λ2
Output: Useful signal F
Initialization: Choose parameters η > 1 and βmin , βmax
with 0 < βmin < βmax < +∞, initialize an iteration
number k ← 0 and a bounded starting point;
repeat

Initialize βk ∈ [βmin , βmax];
repeat

Update Fk+1 by solving (32) with β being
replaced by βk ,

Update S by solving (35) with β being replaced
by βk ,

Update N k+1 by solving (38) with β being
replaced by βk ,
if β ∈ (0, 6μ2

13 ) (the definition of μ2 can be found in
Assumption 1) then

Break;
else

βk+1 ← min(ηβk , βmax);
end if

until the maximum number of inner loop is reached;
Update Λk+1

1 using (39),
if Stopping criterion is satisfied; then

Break;
else

k ← k + 1;
end if

until the maximum number of outer loop is reached.

The soft-shrinkage operator shrink(·, ·) is the proximity opera-
tor of the l1-norm [48] [49]. For N k+1 , we have

N k+1 := argmin
N

L̄ (Fk+1 ,N ,Sk+1 ,Λk
1
)

= argmin
N

(

λ1‖N‖2F +
β

2
‖Y − (Fk+1

+ N + Sk+1) +
Λk

1

β
‖2F

)

. (37)

Similarly, we can obtain the closed-form solution for the updat-
ing of N k+1

N k+1 :=
β

(2λ1 + β)

(

Y +
Λk

1

β
− (Fk+1 + Sk+1)

)

. (38)

The update of Λk+1
1 can be formulated as

Λk+1
1 := Λk

1 + β[Y − (Fk+1 +N k+1 + Sk+1)] (39)

A. Initialization and Penalty Parameter Updating

It is known that a good initialization of the step size for
outer iterations can significantly reduce the line search cost
and hence speed up the overall convergence of an algorithm.
In this paper, we adopt the so-called last rule to initialize the

penalty parameter. Specifically, βk+1 is initialized using the
finally accepted value of β at the last iteration.

With a fixed β, ADMM converges slowly [50]. Consequently,
an adaptive updating strategy for the penalty parameter is
adopted

βk+1 = min(βmax, ηβk ) (40)

where βmax is the upper bound for β. In our experiments, we
empirically set the lower bound βmin as 10−4 , and the upper
bound βmax as 104 . By combining the updating rule for step size
β proposed in [50] and our problem, we obtain a proximal value
assignment of η

η =
{

η0 , if βkγk/‖Y‖ < ε2
1, otherwise

(41)

where γk = max(‖Fk+1 −Fk‖, ‖N k+1 −N k‖, ‖Sk+1 −
Sk‖) , β0 = αε2 , and α depends on the size of Y .

B. Global Analysis

In this section, we mainly analyze the convergence of ADMM
for solving problem defined in (17). We observe that f1(·) = ‖ ·
‖∗, f2(·) = ‖ · ‖2F , and f3(·) = ‖ · ‖1 . f2(·) are strongly convex,
while f1(·) and f3(·) are convex terms, but may not be strongly
convex. The problem defined in (17) can be reformulated as

min
F ,N ,S

f1(F) + λ1f2(N ) + λ2f3(S)

s.t. Y = F +N + S.
(42)

Definition 4: (Convex and Strongly Convex) Let f : Rn →
[−∞,+∞], if the domain of f denoted by domf := {x ∈
Rn , f(x) < +∞} is not empty, f is considered to be proper.
If for any x ∈ Rn and y ∈ Rn , we always have f(tx + (1−
t)y) ≤ tf(x) + (1− t)f(y),∀t ∈ [0, 1], then it is considered
that f is convex. Furthermore, f is considered to be strongly
convex with the modulus μ > 0, if

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)

− 1
2
μt(1− t)‖x− y‖2 ,∀t ∈ [0, 1]. (43)

Cai et al. [51] and Li et al. [52] have proved the convergence
of Extended ADMM (e-ADMM) with only one strongly convex
function for the case m = 3.

Assumption 1: In (42), f1 and f3 are convex, and f2 is
strongly convex with modulus μ2 > 0.

Assumption 2: The optimal solution set for the problem de-
fined in (17) is nonempty, i.e., there exist (F∗,N∗,S∗,Λ∗) ∈ Ω∗

such that the following requirements can be satisfied:

0 = ∇f1(F∗)− Λ∗ (44)

0 = λ1∇f2(N∗)− Λ∗ (45)

0 = λ2∇f3(S∗)− Λ∗ (46)

0 = F∗ +N∗ + S∗ − Y. (47)

Theorem 4: Assume that Assumptions 1 and 2 hold. Let
(Fk ,N k ,Sk ,Λk ) be the sequence generated by Algorithm 1
for solving the problem defined in (17). If β ∈ (0, 6μ2

13 ), the
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limit point of (Fk ,N k ,Sk ,Λk ) is an optimal solution to (17).
Moreover, the objective function converges to the optimal value
and the constraint violation converges to zero, i.e.,

lim
k→∞

‖f1(F∗) + λ1f2(N∗) + λ2f3(S∗)− f ∗‖ = 0 (48)

and

lim
k→∞

‖Y − (F +N + S)‖ = 0 (49)

where f ∗ denotes the optimal objective value for the problem
defined in (17). In our specific application, β ∈ (0, 6∗2λ1

13 ) can
sufficiently ensure the convergence [51].

C. Stopping Criterion

Main Result 1: It can be easily verified that the iterations
generated by the proposed ADMM algorithm can be character-
ized by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ∈ ∂‖Fk+1‖∗ − [Λk
1 − β(Fk+1 + Sk +N k − Y)]

0 ∈ ∂(λ2‖Sk+1‖1)− [Λk
1 − β(Fk+1 + Sk+1 +N k − Y)]

0 ∈ ∂(λ1‖N k+1‖2F )− [Λk
1 − β(Fk+1 + Sk+1

+N k+1 − Y)]
Λk+1

1 = Λk
1 − β[(Fk+1 +N k+1 + Sk+1)− Y]

(50)
which is equivalent to
⎧
⎪⎪⎨

⎪⎪⎩

0 ∈ ∂‖Fk+1‖∗−Λk+1
1 +β(Sk − Sk+1)+β(N k−N k+1)

0 ∈ ∂(λ2‖Sk+1‖1)− Λk+1
1 + β(N k −N k+1)

0 ∈ ∂(λ1‖N k+1‖2F )− Λk+1
1

Λk+1
1 = Λk

1 − β[(Fk+1 +N k+1 + Sk+1)− Y].
(51)

Equation (51) shows that the distance of the iterations
(Fk+1 ,N k+1 ,Sk+1) to the solution (F∗,N∗,S∗,Λ∗) can
be characterized by β(‖Sk − Sk+1‖+ ‖N k −N k+1‖) and
1
β ‖Λk

1 − Λk+1
1 ‖. Thus, a straightforward stopping criterion for

Algorithm 1 is

min{β(‖Sk−Sk+1‖+‖N k−N k+1‖), 1
β
‖Λk

1 − Λk+1
1 ‖} ≤ ε.

(52)
Here, ε is an infinitesimal number, e.g., 10−6 .

D. Choice of Parameters

In our optimization framework, given in (24), there are
three parameters β, λ1 , and λ2 . As previously mentioned in
Section III-B, λ2 does not need any tuning and can be set to
1/
√

n(1)n3 , where n(1) = max{n1 , n2}. Besides, the value of
β is limited to the range of (0, 6∗2λ1

13 ) to ensure the convergence
of our algorithm (based on the analysis in Theorem 4). Thus, the
value of λ1 is important for the performance of our algorithm.

Theorem 5: Supposing that the Gaussian noise term N ∈
Rn×n , and each entry ni,j is i.i.d. normally distributed, we
can have that forN (0, σ2), ‖N‖2F ≤ (n +

√
8n)σ2 with a high

probability [53].
Theorem 5 can be extended to the tensor case. For a

Gaussian noise term N ∈ Rn1×n2×n3 , and each entry ni,j,k

is i.i.d. normally distributed, we can have that for N (0, σ2),
‖N‖2F ≤ (n(1)n3 +

√
8n(1)n3)σ2 with a high probability. We

define δ =
√

(n(1)n3 +
√

8n(1)n3)σ. Let the value of 1/2λ1

be changed within the range of ( δ
10 , 10δ) to find the optimal

value of λ1 to achieve satisfying restoration results.

E. Analysis of Computational Complexity

The updating of Fk+1 , Sk+1 , and Fk+1 have closed-
form solutions, as shown in Algorithm 1. It is easy to see
that the major cost in each iteration lies in the updating of
Fk+1 , which requires the calculation of FFT and n3 SVDs
of n1 × n2 matrices. Thus, the complexity for each iteration
is O(n1n2n3 log(n3) + n(1)n(2)n3). We denote that n(1) =
max{n1 , n2} and n(2) = min{n1 , n2}.

V. EXPERIMENTS

In this section, we conduct experiments on simulated and
real image datasets to test the HSI denoising performance of the
proposed LRTR algorithm. To thoroughly evaluate the proposed
algorithm, we select four methods for comparison, i.e., the
LRMR method [3], the LRTA method [28], the PARAFAC
method [31], and the VBM3D method [33]. LRMR is a
well-established low-rank matrix recovery method for HSI de-
noising. LRTA and PARAFAC are tensor decomposition based
approaches for HSI denoising. VBM3D is an extension of the
block-matching and 3-D filtering (BM3D) for single-image de-
noising. As the VBM3D method does not remove impulse noise.
We first use robust PCA (RPCA) to filter the impulse noise,
and then VBM3D is applied to the low-rank part of the RPCA
model. We denote this restoration method as RPCA+VBM3D.
In the experiments, we tune the parameters for the proposed
method and the other four compared methods. LRTA is a
parameter-free method. For the PARAFAC method, we set the
thresholds for constancy of diagonal elements and the energy
finiteness of off-diagonal elements in residual covariance matrix
to be 10−7 and 10−6 , respectively. For the LRMR method, the
upper bound rank for LRMR is manually adjusted to achieve
its best performance. The noise variance for VBM3D and the
proposed LRTR method is estimated using the multiple regres-
sion theory-based approach [54]. In addition, the gray values in
each HSI band are normalized to [0,1] before denoising.

A. Mixed-Noise Removal on Simulated Data

The synthetic data were generated using two public HSI
datasets, including the Washington DC Mall dataset and the
Pavia city center dataset. The Washington DC Mall dataset was
collected by the hyperspectral digital imagery collection exper-
iment, and the whole image contains 1208× 307 pixels and
191 spectral bands. In our experiments, only a subimage of size
256× 256× 191 was used, as shown in Fig. 1(a). The Pavia
city center dataset was collected by the reflective optics system
imaging spectrometer (ROSIS-03). The first 22 bands (contain-
ing all the noisy bands) of this data were removed and the size of
the subimage was set to 200× 200× 80, as shown in Fig. 1(b).
To test different noise reduction methods, the Peak SNR (PSNR)
and structural similarity index measurement (SSIM) [55] were
used. For HSI, we computed the PSNR and SSIM values
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Fig. 1. (a) Pseudocolor image of the Washington DC Mall dataset (R: 60, G:
27, and B: 17). (b) Pseudocolor image of the Pavia City Center dataset (R: 80,
G: 34, and B: 9).

between each noise-free band and the denoised band, and
then averaged them. These metrics are denoted as mean PSNR
(MPSNR) and mean SSIM (MSSIM).

In experiments, noisy hyperspectral data were generated by
adding sparse noise and Gaussian noise to the two reference
HSI datasets, as the following three cases:

Case One: To test the sparse noise removal performance of
different algorithms, we added sparse noise S with different
sparsity and Gaussian noise with a fixed variance to all bands of
the Washington DC Mall data and the Pavia City Center data.
The mean of Gaussian noise was set to zero and its variance was
set to 0.02. Then, different percentages of sparse noise were
considered. The percentages were set to 0.05, 0.10, 0.15, and
0.20, respectively.

Case Two: To test the Gaussian noise removal performance
of different algorithms, we added Gaussian noise with different
variance and sparse noise S with a fixed sparsity. Gaussian noise
was added to the Washington DC Mall data and the Pavia City
Center data. The mean of Gaussian noise was set to zero while
different variance were considered, including 0.02 and 0.04.
Sparse noise with a percentage of 0.10 was added to the data.

Case Three: Zero-mean Gaussian noise with different vari-
ances was added to each band of the two HSI datasets. The
variance values were randomly selected from 0.02 to 0.04. Im-
pulse noise was added to all bands of the Washington DC Mall
dataset and the Pavia City Center dataset. The percentage of
impulse noise was set to 0.10. For the Washington DC Mall
data, dead lines were added to 11 selected bands from band 80
to 90. The width of the dead lines ranged from one line to three
lines. Stripes were added to four bands from band 91 to 94. For
the Pavia City Center data, dead lines were added to 11 bands
from band 30 to 40. The width of the dead lines ranged from
one line to three lines. Stripes were added to 4 bands from band
41 to 44.

These types of sparse noise are simulated in different ways.
1) Speckle noise: the speckle noise is generated by adding

salt and pepper noise to the HSIs.
2) Dead pixels or lines, and stripes: the model for stripes and

dead pixels can be described as

gx,y = Ax,y zx,y + Bx,y (53)

where (x, y) denotes pixel coordinate, zx,y is the useful signal
for pixel (x, y) and Ax,y and Bx,y are the relative gain and offset
parameter. For healthy pixels, the gain and bias should be one

and zero, respectively. For dead pixels, the gain is set to zero
and the bias is set to be the pixel value. For stripes, the pixel
values in a whole row or column are the same [56].

The denoising results achieved by different algorithms on the
Washington DC Mall and the Pavia City Center data in Case One
are presented in Tables I and II, respectively. The best result for
each metric is labeled in bold. From Tables I and II, it can be seen
that the proposed method provides the highest values in both
MPSNR and MSSIM, which clearly demonstrates the advantage
of the proposed method over the other methods for impulse noise
removal. The denoising results achieved by different algorithms
on the two HSI datasets in Case Two are shown in Tables III
and IV. In Tables III and IV, the MPSNR and MSSIM values
achieved by LRMR are comparable to those achieved by LRTR.
They are significantly superior to RPCA+VBM3D, LRTA, and
PARAFAC. The results indicate that these low-rank-regularized
methods can better remove Gaussian noise with the existence of
impulse noise.

For Case Three, we select six typical bands of the two HSI
datasets for visual inspection. Figs. 2 and 5 show denoising per-
formance with different methods on band 6 of the Washington
DC Mall data and band 1 of the Pavia City Center data, which
are only contaminated by impulse noise and zero-mean Gaus-
sian noise. Figs. 3 and 6, respectively, show denoising results
on band 88 of the Washington DC Mall data and band 40 of the
Pavia City Center data, which are corrupted by dead lines, apart
from Gaussian noise and impulse noise. Figs. 4 and 7, respec-
tively, show denoising results on band 94 of the Washington
DC Mall data and band 43 of the Pavia City Center data, which
are contaminated by stripes, Gaussian noise and impulse noise.
From Figs. 2 and 5, it can be observed that the proposed method
and the LRMR method can remove Gaussian noise efficiently
and preserve the edge and detailed information simultaneously,
as compared to the other three methods. Some detailed infor-
mation is lost for RPCA+VBM3D. There is still some Gaussian
noise remaining in images denoised by LRTA and PARAFAC.
Meanwhile, the proposed LRTR algorithm outperforms LRMR
and can more effectively suppress Gaussian noise. From Figs. 3
and 6,it can be observed that the proposed algorithm performs
best and can effectively remove dead lines. RPCA+VBM3D,
LRTA, and PARAFAC fail to remove either Gaussian noise,
impulse noise, or dead lines. LRMR can effectively remove
Gaussian noise and impulse noise. But, the dead lines remaining
in the image restored by LRMR are more obvious than the image
restored by LRTR. From Figs. 4 and 7, it can be seen that the
LRTR method performs best in stripe removal and preserves the
edge and detailed information. The effectiveness of the proposed
algorithm can also be illustrated by MPSNR and MSSIM shown
in Tables V and VI. The MPSNR and MSSIM values achieved
by the proposed method are higher than the other four compared
methods, which are consistent with the visual results shown in
Figs. 2–7.

B. Experiments on Real HSI Data Corrupted by Sparse and
Gaussian Noise

In this part, we consider the real noisy Indian Pines dataset.
This dataset was acquired by the NASA Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) instrument over the
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TABLE I
QUANTITATIVE EVALUATION OF DIFFERENT DENOISING ALGORITHMS ON THE WASHINGTON DC MALL DATASET IN CASE ONE

Sparse percentage Metrics RPCA+VBM3D LRTA PARAFAC LRMR LRTR

0.05 MPSNR (dB) 29.1156 24.3114 24.8592 32.6698 33.7431
MSSIM 0.5580 0.4491 0.4834 0.7521 0.7949

0.10 MPSNR (dB) 28.4188 20.6820 20.5284 32.1473 32.9455
MSSIM 0.5361 0.3899 0.3452 0.7306 0.7612

0.15 MPSNR (dB) 27.2548 17.0897 16.9002 31.6098 32.1761
MSSIM 0.4999 0.2987 0.2358 0.7075 0.7281

0.20 MPSNR (dB) 25.4779 14.2354 14.0786 31.0435 31.4059
MSSIM 0.4455 0.2304 0.1561 0.6819 0.6943

TABLE II
QUANTITATIVE EVALUATION OF DIFFERENT DENOISING ALGORITHMS ON THE PAVIA CITY CENTER DATASET IN CASE ONE

Sparse percentage Metrics RPCA+VBM3D LRTA PARAFAC LRMR LRTR

0.05 MPSNR (dB) 28.2734 26.4367 26.7632 29.8486 30.0233
MSSIM 0.8024 0.7871 0.8126 0.8633 0.9266

0.10 MPSNR (dB) 27.6808 22.2802 22.7387 29.2546 30.0122
MSSIM 0.7791 0.6392 0.6996 0.8479 0.9108

0.15 MPSNR (dB) 26.5413 18.7495 19.0216 28.7257 29.7580
MSSIM 0.7309 0.4729 0.5378 0.8322 0.8715

0.20 MPSNR (dB) 24.6956 15.8978 16.1163 28.1046 28.2005
MSSIM 0.6443 0.3172 0.3814 0.5092 0.5596

TABLE III
QUANTITATIVE EVALUATION OF DIFFERENT DENOISING ALGORITHMS ON THE WASHINGTON DC MALL DATASET IN CASE TWO

Noise variance Metrics RPCA+VBM3D LRTA PARAFAC LRMR LRTR

0.02 MPSNR (dB) 28.7544 22.4198 20.6719 32.1473 32.9455
MSSIM 0.5464 0.7055 0.6417 0.7306 0.7612

0.04 MPSNR (dB) 26.7479 22.2973 20.5941 30.7509 31.6802
MSSIM 0.4840 0.4030 0.3544 0.6727 0.7108

TABLE IV
QUANTITATIVE EVALUATION OF DIFFERENT DENOISING ALGORITHMS ON THE PAVIA CITY CENTER DATASET IN CASE TWO

Noise variance Metrics RPCA+VBM3D LRTA PARAFAC LRMR LRTR

0.02 MPSNR (dB) 27.9607 23.9926 24.4596 29.2546 30.1751
MSSIM 0.7905 0.7055 0.7533 0.8479 0.8809

0.04 MPSNR (dB) 26.3082 22.4087 22.8522 27.4661 27.9068
MSSIM 0.7190 0.6417 0.6960 0.7927 0.8233

Fig. 2. Denoising results on the Washington DC Mall dataset in Case Three. (a) Noisy band 6, (b) RPCA+VBM3D, (c) LRTA, (d) PARAFAC, (e) LRMR, and
(f) LRTR.
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Fig. 3. Denoising results on the Washington DC Mall dataset in Case Three. (a) Noisy band 88, (b) RPCA+VBM3D, (c) LRTA, (d) PARAFAC, (e) LRMR, and
(f) LRTR.

Fig. 4. Denoising results on the Washington DC Mall dataset in Case Three. (a) Noisy band 94, (b) RPCA+VBM3D, (c) LRTA, (d) PARAFAC, (e) LRMR, and
(f) LRTR.

Fig. 5. Denoising results on the Pavia City Center dataset in Case Three. (a) Noisy band 1, (b) RPCA+VBM3D, (c) LRTA, (d) PARAFAC, (e) LRMR, and (f)
LRTR.

Fig. 6. Denoising results on the Pavia City Center dataset in Case Three. (a) Noisy band 40, (b) RPCA+VBM3D, (c) LRTA, (d) PARAFAC, (e) LRMR, and (f)
LRTR.

Indian Pines test site in Northwestern Indiana in 1992. The
Indian Pines dataset has a size of 145× 145× 220, covering
the wavelength range of 0.4–2.5 μm. The number of bands
is reduced to 200 by removing the bands covering the region
of water absorption: 104–108, 150–163, and 220. The pseu-
docolor images composed of bands 3, 147, and 219, before
and after denoising, are shown in Fig. 8. It can be observed
that LRTR obtains the best performance. The proposed LRTR
method effectively suppresses Gaussian noise and sparse noise,
while preserving local details and structural information of the
image. LRMR can obtain a comparable result to LRTR, but

some dense noise can still be found in the restored image. For
RPCA+VBM3D, the noise is well suppressed, but the result is
oversmoothed and some details are lost. The PARAFAC intro-
duces some distortions. LRTA can remove noise and preserve
details, but not completely.
Since the original images in bands 1 and 219 are seriously

corrupted by noise, there is almost no useful information without
denoising. Figs. 9 and 11 show the denoising results achieved
by the proposed method and four compared methods
in bands 1 and 219, respectively. In Figs. 9 and 11, it can be
seen that the proposed LRTR method performs best. The edge
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TABLE V
QUANTITATIVE EVALUATION OF DIFFERENT DENOISING ALGORITHMS ON THE WASHINGTON DC MALL DATASET IN CASE THREE

Metrics RPCA+VBM3D LRTA PARAFAC LRMR LRTR

MPSNR (dB) 36.2625 24.8013 25.4436 35.9243 40.6451
MSSIM 0.8003 0.4470 0.4853 0.7755 0.8950

TABLE VI
QUANTITATIVE EVALUATION OF DIFFERENT DENOISING ALGORITHMS ON THE PAVIA CITY CENTER DATASET IN CASE THREE

Metrics RPCA+VBM3D LRTA PARAFAC LRMR LRTR

MPSNR (dB) 29.0943 24.1558 26.1668 34.7077 37.0560
MSSIM 0.8232 0.6715 0.8051 0.9498 0.9665

Fig. 7. Denoising results on the Pavia City Center dataset in Case Three. (a) Noisy band 43, (b) RPCA+VBM3D, (c) LRTA, (d) PARAFAC, (e) LRMR, and (f)
LRTR.

Fig. 8. Denoising results on the AVIRIS Indian Pines dataset (R: 3, G: 147, and B: 219). (a) Original, (b) RPCA+VBM3D, (c) LRTA, (d) PARAFAC, (e) LRMR,
and (f) LRTR.

Fig. 9. Denoising results on band 1 of the Indian Pines dataset. (a) Original image, (b) RPCA+VBM3D, (c) LRTA, (d) PARAFAC, (e) LRMR, and (f) LRTR.

Fig. 10. Denoising results on band 3 of the Indian Pines dataset. (a) Original image, (b) RPCA+VBM3D, (c) LRTA, (d) PARAFAC, (e) LRMR, and (f) LRTR.
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Fig. 11. Denoising results on band 219 of the Indian Pines dataset. (a) Original image, (b) RPCA+VBM3D, (c) LRTA, (d) PARAFAC, (e) LRMR, and (f) LRTR.

Fig. 12. Ground truth of class labels of the 16 land-cover classes in Indian
Pines dataset

information can be better preserved by LRTR than the other four
methods. The LRTA and PARAFAC methods perform poorly
and fail to remove noise as compared to the original noisy im-
ages. Quite a few distortions are introduced in the PARAFAC
method. RPCA+BM3D can well suppress heavy noise, but a
large amount of local details and structural information in the
recovered image are lost.The image restored by LRMR still
has heavy noise. The restoration results on band 3 are given in
Fig. 10. In Fig. 10, it can be observed that the result achieved
by RPCA+VBM3D is oversmoothed. It indicates that VBM3D
cannot perform well in heavy noise, that is, because the similar-
ity among grouped blocks is dependent on noise level. There is
still a lot of stripe noise remaining in the image recovered by the
LRTA method. The image restored by PARAFAC has some dis-
tortions. The performance of the LRMR method is good except
in the marginal area since LRMR is a patch-based denoising
method, which may lead to a loss of interdimensional informa-
tion and details. It can be noticed that noise can be removed by
LRTR and the edge and texture information are well preserved
in the image.

HSI classification is an important subsequent application for
an HSI denoising method. Thus, the classification accuracy can
be adopted to evaluate the denoising performance. Here, a sup-
port vector machine (SVM) is utilized to conduct supervised
classification for HSI data [57]. The main idea of SVM is to
project the data to a higher dimensional space and to use a
hyperplane to obtain a better separation. The effectiveness of
these methods is evaluated in terms of classification accuracy:
the overall accuracy (OA) and class-specific accuracy (CA).
A total of 10 249 samples are divided into 16 classes and
are not mutually exclusive, as shown in Fig. 12. A total of
1045 samples (about 10%) are selected as training samples.

The number of training samples for each class is shown in Ta-
ble VII. The left samples are used for testing. To make the
classification performance achieved by different methods more
reliable, the training samples are randomly selected for 100
times. The performances of all algorithms are compared using
the mean and standard deviation of the overall classification
accuracy.

Table VII shows the OA and CA values achieved by the
proposed method and other four compared methods. It can be
seen that the OA and CA values are improved when noise is
reduced. It indicates that the denoising step can improve the
classification performance. Among all the classification results
achieved by the five denoising methods, the proposed LRTR
method achieves the highest OA and CA values, indicating the
best performance in noise removal.

C. Discussion

1) Convergence of LRTR: To verify the convergence of
LRTR, we first define variables Error, chgY , chgF , chgS, and
chg for each iteration k, as shown in the following equations:

Error := ‖Y − Fk − Sk −N k‖F (54)

chgY := ‖Y − Fk − Sk −N k‖∞
= max

i1 ,i2 ,i3
|Yi1 ,i2 ,i3 −Fk

i1 ,i2 ,i3
− Sk

i1 ,i2 ,i3
−N k

i1 ,i2 ,i3
|

(55)

chgF := ‖Fk −Fk−1‖∞ = max
i1 ,i2 ,i3

|Fk
i1 ,i2 ,i3

−Fk−1
i1 ,i2 ,i3

|
(56)

chgS := ‖Sk − Sk−1‖∞ = max
i1 ,i2 ,i3

|Sk
i1 ,i2 ,i3

− Sk−1
i1 ,i2 ,i3

|. (57)

We can define chg for each iteration k as

chg := max{chgF , chgS, chgY}. (58)

Then, we show the values of Error, chgF , chgS, and chg
achieved at each iteration in the simulated experiment in Case
Three on the Washington DC Mall data and the Pavia City Cen-
ter data in Figs. 13 and 14, respectively. From Fig. 13, it can be
observed that the values of Error, chgF , chgS, and chg decrease
monotonically. The maximum number of iterations is 60. Sim-
ilarly, values of these variables decrease monotonically on the
Pavia City Center data, as shown in Fig. 14. When the stopping
criterion is satisfied, the maximum number of iterations on the
Pavia City Center data is 70.

2) Denoising Performance on Gaussian Noise Only: As
illustrated in the previous experiments, the proposed LRTR
method performs better than the other four compared method
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TABLE VII
CLASSIFICATION ACCURACY (%) ACHIEVED ON THE INDIAN PINES DATASET USING SVM CLASSIFIER AND DIFFERENT DENOISING METHODS

� Samples Methods

Class Training/Total SVM RPCA+VBM3D LRTA PARAFAC LRMR LRTR

Alfalfa 15/46 88.24 92.60 87.95 86.32 93.65 93.97
Corn-notill 100/1428 73.98 80.66 75.20 76.53 77.01 81.28
Corn-mintill 100/830 71.43 77.82 72.68 72.82 79.50 81.50
Corn 50/237 86.92 91.80 88.42 87.59 92.32 92.72
Grass-pasture 50/483 93.58 91.18 90.98 90.15 92.60 93.62
Grass-tree 100/730 97.20 99.06 98.26 98.42 98.88 99.52
Grass-pasture-mowed 15/28 92.38 98.46 93.90 90.05 96.24 99.68
Hay-windrowed 50/478 97.82 98.32 98.10 98.34 99.23 99.75
Oats 15/20 96.23 99.68 97.18 96.56 98.68 99.92
Soybeans-notill 100/972 78.78 85.20 81.35 81.48 84.54 88.60
Soybeans-mintill 150/2455 76.28 83.22 77.80 81.58 84.69 84.53
Soybeans-cleantill 50/593 74.85 81.68 76.26 77.15 84.80 85.48
Wheat 50/205 99.08 97.78 97.85 95.56 98.20 98.90
Woods 100/1265 94.75 95.83 95.85 96.10 98.16 97.90
Buildings-Grass-Trees-Drives 50/386 59.78 72.46 65.46 71.18 76.26 87.60
Stone-Steel-Towers 50/93 98.22 98.92 98.52 98.20 97.87 99.96
OA 81.34 ± 0.99 85.86 ± 0.58 82.60 ± 1.00 83.98 ± 0.72 86.36 ± 0.80 88.26 ± 0.50

TABLE VIII
QUANTITATIVE EVALUATION OF DIFFERENT DENOISING ALGORITHMS ON THE WASHINGTON DC MALL DATASET WITH GAUSSIAN NOISE ONLY

Noise variance Metrics VBM3D LRTA PARAFAC LRMR LRTR

0.02 MPSNR (dB) 37.0733 41.0602 38.4658 33.8050 39.5427
MSSIM 0.8435 0.9107 0.9007 0.7983 0.9175

0.04 MPSNR (dB) 28.2912 39.6259 38.7180 31.6576 37.5267
MSSIM 0.5182 0.8746 0.8673 0.7147 0.8742

TABLE IX
QUANTITATIVE EVALUATION OF DIFFERENT DENOISING ALGORITHMS ON THE PAVIA CITY CENTER DATASET WITH GAUSSIAN NOISE ONLY

Noise Variance Metrics VBM3D LRTA PARAFAC LRMR LRTR

0.02 MPSNR (dB) 29.7310 31.2154 29.5260 30.6308 32.8627
MSSIM 0.8453 0.7055 0.8629 0.8844 0.9246

0.04 MPSNR (dB) 23.1374 29.0799 29.4932 28.3887 30.4867
MSSIM 0.5536 0.6417 0.8566 0.8239 0.8811

Fig. 13. Divergence results of LRTR in the simulated data experiment in Case
Three on the Washington DC Mall data. (a) Value of error at each step. (b) Value
of chgF , chgS, and chg at each step.

when HSI data is corrupted by a mixture of Gaussian noise
and sparse noise. Then, we compare these algorithms on data
with Gaussian noise only. Gaussian noise was added to the
Washington DC Mall data and the Pavia City Center data. The

Fig. 14. Divergence results of LRTR in the simulated data experiment in Case
Three on the Pavia City Center data. (a) Value of error at each step. (b) Value
of chgF , chgS, and chg at each step.

mean of Gaussian noise was set to 0 while different variances
were considered, including 0.02 and 0.04. The denoising results
achieved on the two HSI datasets are shown in Tables VIII and
IX. In Tables VIII and IX, it can be seen that the LRTR method
still achieves better results in terms of MPSNR and MSSIM.
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TABLE X
RUNNING TIME COSTED BY DIFFERENT METHODS ON THE INDIAN PINES

DATASET

Method RPCA+VBM3D LRTA PARAFAC LRMR LRTR

Time(s) 25.00 1.62 150.26 41.30 30.76

It indicates that the proposed algorithm can achieve promising
performance for the removal of Gaussian noise only.

3) Computational Time Comparison: In Section IV-E, a
computational complexity analysis of the proposed algorithm is
presented. Here, we compare the running time of the proposed
method with other methods. The experiments were performed
on a laptop with 3.6-GHz Intel Core CPU and 8-GB memory
using MATLAB. The time costs on the Indian Pines dataset
in Section V-B are reported in Table X. It can be seen that
the time cost of our denoising method ranks in the middle. To
make our LRTR more efficient, we can seek faster optimization
scheme (such as the accelerated proximal gradient method [58])
to solve the proposed denoising model and find possible meth-
ods to accelerate the SVD when solving the rank minimization
subproblem.

VI. CONCLUSION

In this paper, we have proposed an LRTR method to remove
mixed noise from HSI data. In the LRTR model, the NP-hard
task of tensor recovery from Gaussian and sparse noise can
be well accomplished by integrating the tensor nuclear norm,
l1-norm and least square term in a unified convex relaxation
framework. The convergence of the proposed algorithm is dis-
cussed. Experiments on both simulated and real HSI datasets
have been conducted to demonstrate the effectiveness of the
proposed denoising method.

There is space for further improvement of the proposed
noise removal method. The low-rank constraint and the TV
regularization can be integrated into a unified framework
to complement each other rather than simply using the
low-rank constraint. The low-rank and sparse tensor decom-
position can provide sparse noise components for the TV reg-
ularization denoising. With the sparse noise information con-
firmed, the TV regularization can provide an enhanced clean
image, and in return help the separation of low-rank and sparse
components.
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